Honeywell # SYSTEM ADMINISTRATOR'S MANUAL **MULTICS** PRELIMINARY EDITION **SOFTWARE** ## Honeywell # SYSTEM ADMINISTRATOR'S MANIJAI | A | A | 1 | 11 | ٦ | | $\overline{}$ | S | |----|---|---|----|---|------|---------------|-----| | IL | " | ı | | | 1 14 | ١. | . – | PRELIMINARY EDITION #### SUBJECT: Description of the Capabilities and Functions of the Multics System Administrator. #### SPECIAL INSTRUCTIONS: This manual corresponds to MIT Revision 3, dated January 9, 1973. DATE: February 1973 ORDER NUMBER: AK50, Rev. 0 This manual was written by Thomas H. Van Vleck of the Programming Development Office of the Massachusetts Institute of Technology. | | ? | |---|--------------------------------------| | 1.1 Purpose 1.2 Resource Control 1.3 System administrators 1.4 Definitions 2. Directory structure and segments | | | 2. Directory structure and segments | 5
5
7 | | | 9 | | <pre>2.2 >user_dir_dir>SysAdmin 2.2.1 >user_dir_dir>SysAdmin>admin</pre> | 11
12
14
14
17 | | add_anon - Add anonymous user to project bill - Run monthly bills chaddr - Change person's mailing address chalias - Change person's alias (obsolete) change - Change person's registration data chdf_proj - Change person's default project check_log - Print selected log info chname - Change person's mailing name choass - Change person's password chprog - Change person's programmer number cu - Create user home directory day - Print daily billing output delegate - Give project to project administrator disk_report - Create disk usage report dproj - Delete project install - Install system table ison - Check if person ID is registered labels - Create mailing labels misc - Input miscellaneous charges and credits new_proj - Add new project new_smf - Install new system master file pmf - Edit pmf, convert to put and install proj_mtd - Print project month-to-date report recov - Recover lost pmf register - Register new person rename_proj - Rename project rqm - Request offline printing of segment setcrank - Schedule absentee job undelegate - Undelegate a project | 111222222223333333333344444445555555 | 57 57 lar, car, ma, gq 4.1 Outputs from billing 4. Billing | Multics System Administrator's Manual 01/09/73 | Page 3
rev 3 | |--|--| | Table of Contents | | | 4.2 Inputs to billing 4.3 Steps in billing | 58
60 | | 5. Daily processing 5.1 Use of absentee 5.2 Disk reporting and charging run 5.3 Daily accounting run (crank) 5.4 Daily operations | 62
62
63
63
64 | | 6. Adding a new project | 65 | | 7. Adding and deleting users | 66 | | 8. System security 8.1 Passwords 8.2 Access control 8.3 Telephone lines 8.4 Terminal ID 8.5 Use of the log 8.6 Cross-checking in the billing process 8.7 Machine-room security 8.8 Tapa security 8.9 Re-assuring a system after a breach 8.10 Password trap | 67
68
69
69
69
70
70 | | 9. Disk quota management | 72 | | 10. Crash recovery | 73 | | 11. Setting up accounting 11.1 Accounting cold start 11.2 Accounting warm start 11.3 Installation_parms 11.3.1 Shifts 11.3.2 Prices 11.3.3 Installation ID and titles 11.3.4 Miscellaneous parameters 11.3.5 Messages 11.3.6 Daemon and absentee rates 11.3.7 Absentee "timax" parameter 11.3.8 Configuration table 11.4 Value_seg 11.5 editing accounting exec_com segments 11.6 Load control group table 11.7 System Message Table | 74
74
75
75
76
77
77
78
78
78
78
80
80 | | 12. Special user identities 12.1 Full system administrators 12.2 Restricted system administrators 12.3 IO.SysDaemon | 82
82
87
82 | | Multics System Administrator's Manual 01/09/73 | Page 4
rev 3 | |---|-----------------| | Table of Contents | | | 12.4 Backup.SysDaemon | 83 | | 12.5 Dumper.SysDaemon | 83 | | 12.6 Retriever.SysDaemon | 83 | | 12.7 Translator.SysDaemon (obsolete) | 83 | | 12.8 Ring_1_Repair.SysDaemon | 83 | | 12.9 Repair.SysDaemon | 84 | | 12.10 Repair.SysAdmin | 84 | | 12.11 Network Daemon | 84 | | 12.12 anonymous users | 84 | | 12.13 Fictitious persons | 84 | | 12.14 Project administrators | 85 | | 12.15 Project "Multics" | 85 | | 12.16 Terminal repair | 85 | | 12.17 System operators | 85 | | 13. Operations performed by full system administrator | 86 | | 13.1 Disk quota moving | 86 | | 13.2 Cleanup of segments | | | 13.3 Load control group management | 87 | | 13.4 Special project requirements | 87 | | 13.5 Access to project directories | 88 | | 13.6 Crash Recovery | 88 | | 14. Load Control Groups | 89 | | BIBLIOGRAPHY . | 91 | | Appendix 1 - Sample Forms | 96 | #### Chapter 1: Introduction #### 1.1 Purpose This document is a manual for system administrators on the Multics system. It does not describe the internal structure of the system-administration data bases or the programs which manipulate them: consult the MPM SPS and the MSPM for these details. This manual is intended to be a useful guide for the man who has to set up and run a Multics system. #### 1.2 Resource Control The overall job of the Multics system-administration programs is to control the use of system resources and to keep records about how they were used. They must also support rationing of resources, provide system security services, and produce usage reports and bills as required. Multics resources are used by logged-in users, each of whom has (at least one) process under his control. The user is identified, when he attempts to log in, by his person ID and his project ID. A process is then created for him, and his resource usage is metered by various hard-core modules. These meter readings are collected and kept in the Multics storage system, and are made available to the resource-monitoring and billing programs. In order to log a user in, some process must execute a program which reads the supplied login request line and password, and checks them agains the list of valid users, also kept in the Multics storage system. To provide maximum protection for this segment, the process in which the login program executes is a fictitious user of the system, called the "answering service." (This process is also called the "initializer process," because It is the process created during the system initialization sequence. the and "system control process.") Almost all resource-usage metering functions are performed in the initializer process. The generic term for the thirty or so programs which deal with system resource control is "user control" or "system control." The administrative and resource-control functions of Multics comprise a sizable subsystem, which, like the rest of the operating system, is designed to continue to grow, and to allow many optional facilities which a particular installation may decide to bypass. Introduction The system administration facilities are organized into several functional areas, with well-defined interfaces. There are six major areas, each of which contains several subsystems. - 1. Hardcore resource multiplexing and metering. The central part of the supervisor, especially the Traffic Control, Page Control, and fault and interrupt service modules, has primary responsibility for providing users with access to the system's resources. These modules also keep extremely fine-grained meters which record the usage of each process. - 2. Hardcore interfaces to the user. The Multics Storage System provides Directory Control services which organize data for a user and control access to data, and keep fine-grained meters and quotas on storage usage. The Interprocess Communication facilities allow for synchronization of and cooperation between processes. - 3. Other supervisor services. Other tape and data-management services are also provided by the Multics supervisor to allow users access to system resources and to control the manner in which these resources are used. - 4. System control. User identification and login control, basic accounting functions, file backup, control of shared devices such as line printers, and operator communication are provided by system control. - 5. System Administration. User registration services and billing operations are performed by the system administrators. This manual is primarily a guide to the operation of programs in the system administration area. - 5. User project administration. Some groups of users may
have the ability to manage some of their own resources. This manual, and the Multics Project Administrator's Manual, describe operations in the user project administration area. Introduction #### 1.3 System administrators There are three kinds of system administrators: - 1. Unrestricted system administrators. - 2. Restricted system administrators. - 3. Project administrators. The system administrators are users of Multics like any other users. They must log in the same way that other users do, and when they log in a process is created for them in the same way as for other users. They differ from other users of Multics in that - 1. They have access to certain segments which regular users do not. It is possible, but not necessary, for them to have access to all segments in the system. - 2. They use special programs to manipulate the accounting data bases. In general, these programs do not make privileged calls; they are ordinary PL/1 programs which manipulate data in ordinary ways. The data for these programs, though, are accounting records and control segments which normal users have no access to. - 3. The system will grant certain requests for them which it will not grant for normal users. In particular, the initializer process will install system tables for system administrators, to change passwords or add new users. - 4. Some privileged calls are available to the system administrators. A system administrator is quite often a very experienced system programmer, and so some special abilities, such as the privilege of being able to patch the system, are available to the system administrators. Almost no use of this ability is made in the design of the system-administration package. The restricted and unrestricted system administrators are users on the project "SysAdmin". Since they therefore have access to the system-administration segments and programs, they can completely control the system's resources. A restricted system administrator has a special initial procedure, #### accounts_overseer_ which provides him with a special set of commands designed for system administration. Although a restricted system administrator has access control privileges which would Introduction potentially enable him to destroy any segment in the system, he is trapped in his special command system, and so can only perform specific accounting functions. An unrestricted system administrator can use any Multics command. (He may also use the soecial command system.) Because the unrestricted system administrator can cause damage to the segment hierarchy, circumvent access control restrictions, and destroy resource accounting, only careful and carefully-trained programmers with a good knowledge of Multics should operate as unrestricted system administrators. project administrators are in charge of a particular project. A system administrator can function as a project administrator for any project. Initially, all projects are set up with only the system administrators. If a project needs more control over its usage than the system administrators can provide, they may delegate control of the project to a project administrator. Project administrators, too, can cause damage to segments, but only those of their projects. They should therefore be responsible individuals who are willing to do the necessary work to keep projects running smoothly. Project administrators are usually normal Multics programmers who have taken on additional responsibilities: they are given no special command system, but certain commands will work for them which will not work for non-administrators. Introduction #### 1.4 Definitions A <u>person</u> is a human being or something (such as a daemon) that is treated like one by the system. Each registered person is identified by a string of one to 22 characters, beginning with a capital letter, called a person ID, which is unique within the installation. Usually, the person ID is the person's last name. Each person has several attributes which the system remembers, including a personal password and a default project ID. These items, along with information about the user such as full name and title, mailing address, and programmer number, are maintained by the system administrators. The term <u>user</u> is used in two different ways. We often speak of a logged-in person as a user, and, sometimes, use the term to refer to the process which the user is controlling from his terminal. Esoecially in the context of user control, however, we apply the term <u>user</u> to any member of the set of users (in the first sense) who <u>could</u> log in. In other words, we speak of a user as a registered identity. A <u>project</u> is a grouping of users for resource control purposes. Each project is identified by a string of from one to nine characters, beginning with a capital letter or a digit, called a <u>Project ID</u>, which is unique within the installation. Each user is associated with a project. The user is identified for access control purposes by the concatenation of his person ID and his project ID. A person may be registered as a user on more than one project: we consider him to be two different users in this case. Since the project ID makes up the second component of each user's <u>access control name</u>, permission to log in on a project confers the ability to reference certain segments. The list of persons who may log in on a project is contained in a segment within the Multics storage system. This segment is accessible only to the system and to the system administrator. The segment is known as a <u>project definition table</u> (pdt). There is one entry in the pdt for each user, which contains the user's attributes and usage information for the current month. Each project has an administrator associated with it. The administrator for a project may be the system administrator, or the project administrator may be some other user of Multics. Project administrators will receive monthly usage reports describing the activity of users of the project. A <u>prolect directory</u> is established for each project. This Introduction directory is contained in the directory ">user_dir_dir". It usually contains a home directory for each user of the project, although the project administrator may specify some other arrangement. The project directory has a <u>disk guota</u>, which limits the total amount of disk storage which the project may occupy. The project administrator may subdivide this quota among directories inferior to the project directory, or he may elect to allow some or all of the directories inferior to the project directory to have a zero quota, and to charge their usage to the project directory quota. Each project is a member of a <u>load control group</u>, which is a grouping of projects which share a guaranteed access to the system. Each load control group has a quota of "primary" load units which represents a guaranteed number of users from the group who will be able to log in. Users in excess of the group's quota will be allowed to log in if the system is not full, but will be subject to preemption by primary users from other groups. The project administrators for the projects of a group may cooperate to control who from the group may have primary status, and for how long. The load control group feature can be used to satisfy large customers of the system, while protecting the small user's ability to be able to access the system. This feature of Multics is optional, though: an installation may simply put all users in the same group and bypass the facility entirely. Directory Structure and Segments The following figure is an overview of the system directory structure. Directory Structure and Segments #### 2.1 >system_control_dir The most important directory for the system-administration programs is the initializer's home directory. >system_control_dir This directory, right off the root, contains those segments referenced by the initializer during the processes of - Logging in a user - Logging out a user - Accounting for user usage - 4. Installing new system-administration tables - System startup The contents of this directory include the following special segments: | lines | the list of GIOC channels to accept dialups and logins from, referenced at system start-up. | |--------------------|---| | sat | the System Administrator's Table, containing an entry for each legal project plus some per-system quantities. This table is referenced at every login, to validate the user's project id. | | installation_parms | installation-defined constants, including shift definitions and prices | | pnt | the Person Name Table, containing the identification of all registered persons. This table is accessed at most logins, to | IO_accounting the IO daemon accounting records, one "card" per print or punch operation determine the user's password. stat_seg on-line system statistics sampled every accounting update answer_table a table which has an entry for each terminal line, with the name and accounting data and process id of the user logged in on it whotab the public list of logged-in users absentee_user_tab the "answer_table" for absentees of Chapter 2 admin.ec Directory Structure and Segments the absentee user lob queue for queue N absenteeN.ms ont.ht a hash table for the pnt message_of_the_day a message typed by the user process during the normal process startup a segment publishing the initializer's proj_admin_seg channel used to signal updates o f system-control tables by administrators log the initializer's log of events of interest. > Many initializer messages are typed to the operator and also recorded in this segment. a special segment giving sequences commands which operators may be allowed to execute as macro-operations. login_help a segment
which is typed if a user says "help" instead of "login" a table giving the guaranteed load units master_group_table each load control group and listing the groups' current occupancy. This table 15 accessed at each login to determine whether the attempted login would overload the system. In addition, other segments may be kept in >system_control_dir, such as segments necessary for system reloads. There are two subdirectories of >system_control_dir which are important. The first directory, >system_control_dir>pdt contains a pdt for each legal project. Whenever a user logs in, his pdt entry is located in his project's pdt, and the user's attributes are used to initialize his process. The usage data figures in these pdt's are updated while the system is running. The second subdirectory, >system_control_dir>install is used when an administrator requests the installation of a new copy of a system table. Directory Structure and Segments #### 2.2 >user_dir_dir>SysAdmin Another important directory is the system administration's project directory, >user_dir_dir>SysAdmin and the directories and segments inferior to It. #### 2.2.1 >user_dir_dir>SysAdmin>admin All data segments pertaining to system administration should be kept in a single directory inferior to >udd>SysAdmin. At MIT, this directory is called nimbs<nimbAsy2
bbu< It contains the following: the user registration segment, giving names and addresses, and person ID's. This segment is used when a person is registered, to guarantee that his person ID is unique at the installation. urf.ht a hash table for this segment reqfile the requisition segment, containing account number, billing address, total charges, and requisition number for each usage account. proffile the project segment, containing descriptive information about each project, including title, supervisor address, and disk storage usage. miscfile the miscellaneous charges and credits journal pmf.archive an archive of all pmf's for projects run by the system administrator PNT.pnt a copy of the system pnt pnt.ht a hash table for this segment smf.cur the current smf This is converted to a sat by "cv_smf" Directory Structure and Segments smf.cur.sat a copy of the current sat disk_stat a segment giving disk quota and usage for all directories with quota installation_parms a backup copy of the same segment in >system_control_dir lines a backup copy of the same segment in >system_control_dir smf.new the next version of the smf. some commands make changes to this segment. All changes can be put into effect by typing "new_smf" cutrpt a report, showing accounts which are cut off, prepared daily sumry a report of account status, prepared daily diskreport a report, giving project disk usage, prepared on request delegated_pmf.archive an archive of all pmf's for delegated projects, giving the pmf at the time of delegation. Changes by project administrator are not reflected. daemon_backup.ec this segment becomes an "absin" segment at the end of the month which lists all daemon use meter_data a copy of the contents of >system_control_1>stat_seg, made every day, for use in generating system statistical reports. today.use_totals a statistical data base which describes month-to-date system resource availability and usage. yesterday.use_totals the previous day's copy of today.use_totals. daily_raport.control a segment which describes which projects will be summarized under each category in the daily and monthly statistical reports. system.report the daily statistical report. oldomf.archive an archive of omf's for deleted projects Directory Structure and Segments | PNT.pntn | previous copies of the pnt, in case of crash | |------------------|---| | smf.old <u>n</u> | previous copies of the smf, in case of crash | | M_pcl_ylisb | extracts from the system log, prepared for printing each day | | log_selact_file | a segment which controls the program "daily_log_process" in its selection of messages from the log for daily printing | | suffix_list | a segment which controls the program "disk_usage_stat" in its selection of segment names to summarize | | termseg | a segment which lists terminals by terminal id code, used by "console_report" | | termuse j | a segment which lists the users of each terminal created by "console_report" | Other data segments kept in this directory include backup copies of billing data for previous months and other temporary segments. It is in this directory that the monthly bills and statistical reports are written. "Filled" and processed $IO_$ accounting segments and log files for the current month are kept in a special subdirectory, >udd>SysAdmin>admin>history until the end of the month. Every night, the system_control_dir cooles of the sat and the pdt's are copied into the directory >udd>SysAdmin>admin>safe_pdts to provide backup billing data. The copies are also used at the end of a billing period, to reset the usage charges in the system odt's. Copies of the usage totals, "projfile", and "reqfile" for previous months are kept in another special subdirectory, >udd>SysAdmin>admin>HF for at least a month, so that the billing can be re-run if necessary. These segments should be dumped to tape and deleted after a reasonable period. Directory Structure and Segments #### 2.2.2 >user_dir_dir>SysAdmin>11b Those segments which are not sensitive, such as system-administration programs not contained in the library, are kept in a different directory. This facilitates dumping of these segments separately, and aids in the startup of new installations. At MIT, this second directory is called #### >udd>SysAdmin>lib ### This "accounting library" directory may contain: | master.ec | the main administration | | segment | for the | |----------------|--|-------------|----------|---------------------------| | err.ec | the exec_com | n segment | Invoked | when errors | | biller.ec | the exec_com | segment Inv | oked for | bliling | | sys_admin_data | the interlock
the same segm | | multiple | editing of | | value_seg | a symbol-tabl
of certain
system-admini | constar | nts use | es the value
ed in the | Installation-dependent system administration tools are also kept here. All system administrators should do a "set_search_dir" so that they use the programs in this library. ### Chapter 3: Administrator Commands The following section provides operating instructions for the functions available to a system administrator. If the system administrator is operating in "restricted" mode, under control of "accounts_overseer_", then all he needs to do is type the function name followed by its arguments. If a system administrator is operating under control of the standard Multics overseer, "process_overseer_", he must precede each command by the string "ec master", e.g., ### ec master func args ... The examples given below assume that the administrator is restricted. Lines prefixed by "u)" are typed by the user and lines prefixed by "s)" are typed by the system. Chapter 3 | Ad | m | I | n | i | 5 | † | r | а | t | or | Comman | đs | |----|---|---|---|---|---|---|---|---|---|----|--------|----| |----|---|---|---|---|---|---|---|---|---|----|--------|----| add_anon Operation: add anonymous user to project Command: add_anon This function adds an anonymous user <u>Usage:</u> non-delegated project with given home directory and initial procedure and (optional) password. Example: To add an anonymous user to the project "Proj5", tyne - u) add_anon Proj5 limited_service_system_ >udd>Proj5 - s) Warning: anonymous user has no password - s) r 1557 12.558 40+34 - s) Signal from System Control process: PDT Installed Administrator Commands bill Operation: run monthly bills Command: bill Usage: This function calls "biller.ec" to aid in billing operations. Example: To prepare for billing, type u) bill prepare To run the bills, type u) bill run To accept a bill, type u) bill accept To clean up after the bills have been written, type u) bill delete See Chaoter 4 (page 57) for a complete explanation of the billing process. | Admini | strator | Commands | 5 | |--------|---------|------------------------------|---| |--------|---------|------------------------------|---| chaddr Operation: change person's mailing address Command: chaddr <u>Usage</u>: This function calls the "change" function to change a person's address. This function is used to change just the address for a single person. It does not install the PNT: to do this, use "install PNT.pnt" or do a regular change and answer yes. The address must be enclosed in quotes. If the address is not supplied, the old address will be displayed, and a change accepted. <u>Example</u>: The address must be enclosed in quotes. To change the address for "Jones", type - u) chaddr Jones "MIT 39-895" - s) r 1557 12.558 40+34 Page 22 rev 3 Chapter 3 Administrator Commands chalias Operation: change person's alias Command: chalias (obsolete) This function has been removed from the system. The alias feature is not currently recommended, because we do not see a good way to implement it consistently. Design discussions are going on about the alias feature, and it will be either completely removed or fully supported. Chapter 3 Administrator Commands change Operation: modify user registration data <u>Command</u>: change <u>Usage</u>: This function is used to review and possibly modify user registration data in the urf and pnt. Each item is typed out, and then the administrator may leave it unchanged by typing "no" or a carriage return, or replace it by new data. <u>Example</u>: To change the default project for the user "Smith", type - u) change - s) Enter userId - u) Smith - s) If you want to change any Item, type the new data. - s) Otherwise type "no" or hit carriage return. - s) Name: Smith, John u) s) Address: MIT 3-001 u) s)
Programmer number: 1234 u) - s) Project: Quark - u) Physics - s) Change password? - u) no - s) More users to change? - u) no - s) Install now? - u) yes - s) Installing new pnt. - s) Installation completed. - s) r 1557 12.558 40+34 - s) Signal from System Control process: PNT installed Notes: The user's name should be given last name first, then a comma, then first name, a space, and middle initial followed by a period. Names of the form "Smith, J. Alfred" are also allowed. If the user has a title, such as "Prof.", the title should follow the name and be separated from the name by a colon, as in "Smith, John J.:Prof.". You may type "stop" at any time to abort all the changes you have made to a particular user and start over. In response to the query "Change password?" you may answer "yes" and then give a new password, or "verify" to Page 24 rev 3 Chapter 3 Administrator Commands | change | | |--------|--| | | | check that you have the correct password, or "no" to leave the password as is. The last name may be up to 32 characters long. The first name and middle initial field may be up to 24 characters. The address field may be up to 32 characters total: use slashes to separate lines of address. The programmer number and title may each be up to 8 characters long. Chapter 3 Administrator Commands chdf_proj Operation: change person's default project Command: chdf_prol Usage: This function calls the "change" function to change a person's default project. This function is used to change just the default project for a single person. It does not install the PNT: to do this, either type "install PNT.pnt" or do a regular change and answer yes. If the default project is not currently in the project segment, a warning message will be printed. If the default project is not supplied, the old value will be displayed, and a change accepted. If the user has changed his own default project, with the "-change_default_project" argument to login, this change will not be effective. A special tool is available to unrestricted system administrators to force the change of a default project: this program is called "pass_util". Example: To change the person-id "Smith" so that his default project is "Proj3", type - u) chdf_oroj Smith Proj3 - s) r 1557 12.558 40+34 Administrator Commands check_log Operation: check log for info on user Command: check_log <u>Usage</u>: Sometimes a user will complain that he can't log in. To find out why, you can scan the log segment for the messages placed there by the initializer which give the reason. Example: To see why "Jones" can't log in, type u) check_log Jones s) 702 09/22/71 1333.2 0 lg_ctl_: no | Jones.Multics 2741 022 chn tty302 reason bad_pass s) r 1557 12.558 40+34 This message says that the user could not log in becuase he gave the wrong password. His terminal ID was 022, and his channel was tty302. This message has severity 0 (so It was not typed to the operator, just logged), and is the 702nd entry in the current log. The following is a list of reasons for not logging a user in: bad_pass bad password badpers person not in pnt, either not added or mistyped no_name no name given pwlocked password locked by administrator bad_prol project does not exist in sat. may be mistyped no_pdt project's pdt is not in >sc1>pdt. message with stars also typed online not_pdt user not in pdt for project. did you forget to do an "upmf?" anon_pw bad anonymous-user password already user already logged in, and no "multip" flag (absentee does not count) no_acct no default account ID acct_no project's account out of funds or past termination date hd_path bad bath name for home directory what should be home directory is non-dir branch hd_nodir hd err some error in getting status of home directory hd_make error creating home directory branch. message In log hd_where home directory missing, does not seem to be below project dir. we will not create. | Administrator | Command | S | |---------------|---------|---| |---------------|---------|---| check_log sys_full system full according to load units saturate system full according to max. number of users cant_bum system full, user cannot find anyone to bump groupmax load control group at absolute maximum no_group load control group in sat not in mgt system not full, group full, no secondary sysgrpfl system full, group full, cannot bump prog_err programming error in lg_ctl_ Page 28 rev 3 Chapter 3 Administrator Commands chname <u>Operation</u>: change person's mailing name Command: chname <u>Usage</u>: This function calls the "change" function to change a person's mailing name. This function is used to change just the name for a single person. It does not install the PNT: to do this, use "install PNT.pnt" or do a regular change and answer yes. The full name must be enclosed in quotes. If the name argument is not given, the old name will be displayed, and a change accepted. Example: The name must be enclosed in quotes. To change the mailing name for the person-id "Jones", type - u) chname Jones "Jones, W. Alfred" - s) r 1557 12.558 40+34 Chapter 3 Administrator Commands chpass Operation: change person's password <u>Command</u>: choass Usage: This function calls the "change" function to change a person's password. This function is used to change the password for a single person. It does not install the PNT: to do this, either type "install PNT.pnt" or do some other change and answer yes. This function can also be used to verify a person's password. Answer "v" or "verify" to the first question, and the program will ask for a password. If the password you give matches the person's password, the command will type "ok". Otherwise, the command will type "wrong" and ask if you want to change (or try again to verify) the password. If the user has changed his own password, with the "-change_password" argument to login, this change will not be effective. A special tool is available to unrestricted system administrators to force the change of such a password: this program is called "pass_util". <u>Example</u>: To change the password for the person-1d "Jones", type - u) chpass Jones - s) Change password? - u) yes - s) Password: - u) newpass s) r 1557 12,558 40+34 (the printer is turned off) Page 30 rev 3 Chapter 3 Administrator Commands chorog <u>Operation:</u> change person's programmer number Command: chprog <u>Usage</u>: This function calls the "change" function to change a person's programmer number. This function is used to change just the programmer number for a single person. It does not install the PNT: to do this, either type "install PNT.pnt" or do a regular change and answer yes. The programmer number must be all numeric. It may be up to 8 characters long. Some installations use the "man number" assigned by the company in this field. If the programmer number is not supplied, the old value will be displayed and a change will be accepted. <u>Example</u>: To chage the programmer number for the person-ld "Smith", type - u) chorog Smith 7399 - s) r 1557 12.558 40+34 Chapter 3 Administrator Commands cu Operation: create user directory Command: cu <u>Usage</u>: This function is used to create a user's home directory. Home directories are created when the user first logs in, and the "upmf" function calls this function, but in rare cases, it may be necessary to execute this function separately. Example: To create the home directory for "Jones.Gamma", type - u) cu Jones Gamma - s) r 1557 12.558 40+34 Administrator Commands day, dayok Operation: print daily billing output Command: day, dayok <u>Usage</u>: Every night, a self-rescheduling absentee job called the "crank" runs which does the daily charging of users and checks for users who should be cut off. The "day" command prints the output from the crank on the console, and asks whether or not to delete the output. The "dayok" command just asks whether to delete the output. Unless there was an error, the absentee output segment should be deleted. Example: The output from the crank should look like this: - u) day - s) - s) Absentee user Accountant.SysAdmin logged in ... - s) r 0330 12.558 40+34 - s) - s) loacur 731 cards, 20 charged, 708 previously collected, 3 next period. - s) Total charge: 345.67 - s) Begin charging for 7/31/71 2355.0 to 8/9/71 2345.1 - s) cut 3, warned 7, total charge \$45678.90 - s) r 1557 12.558 40+34 - S) - s) Absentee user Accountant.SysAdmin logged out ... - s) Delete? - u) yes See section 5.3 (page 63) for a complete explanation of the daily processing. Chapter 3 Administrator Commands delegate Operation: give project to project administrator Command: delegate <u>Usage</u>: This function is used to give a project administrator control over a project's pmf. Once this is done, the project may add and delete its own users, and set resource-usage limits on users in the project. The command moves the project's pmf from "pmf.archive" to a specified directory (keeping a spare copy in "delegated_pmf.archive"), edits the smf to show that the project administrator may install pdt's for this project, and sets access on "proj_admin_seg" and ">system_controj_dir>update" so that the administrator may install his odt. A delegated project is under control of the project administrator only. The system administrator will receive an error message if he attempts to execute the "dpmf", "upmf", or "pmf" functions on a delegated project. Use the "undelegate" command if you wish to take a project back from a project administrator, either in order to have it controlled by the system administrators again, or so that it may be delegated to some new user. Example: To give "Jones.Gamma" control of project "Beta", placing the pmf in ">udd>Beta", type - u) delegate Beta >udd>Beta Jones.Gamma - s) archive: Beta appended to delegated_pmf.archive - s) \$ do a "new_smf" - s) r 1557 12,558 40+34 Administrator Commands disk_report Operation: write disk usage report Command: disk_report, drp, disk_auto <u>Usage</u>: This function is used to
calculate a disk usage report. The administrator may type "disk_report" to cause a manual disk usage calculation. Normally, though, disk usage is done automatically every night by the absentee job "dodrp", which executes the "disk_auto" function. (See chapter 5 for details on how the absentee use is managed.) The program "sweep" is used to get quota for all directories into the data segment "disk_stat". The program "charge_disk" then charges these usage figures to projects in their "projfile" entries. A printable segment, called "diskreport", is produced but not automatically printed. To print copies of this segment, type "ram diskreport". #### Example: To run a disk report, type - u) disk_report - s) \$ Creating disk usage report. - s) \$ Following figure is total quota/current use - s) 75500/64432 - s) Charged 906 directories out of 910 to 108 projects - s) r 1557 12.558 40+34 Chapter 3 Administrator Commands domf Operation: remove user from project Command: dpmf <u>Usage:</u> This function deletes a user from a project master file for a project which is managed by the system administrators. Example: To delete user "Black" from project "Gamma", type - u) domf Gamma Black - s) r 1557 12.558 40+34 - s) Signal from System Control process: PDT installed Administrator Commands | doroj | | |-------|--| | | | Operation: delete project Command: doroj Usage: This function is used to delete a project. It edits the smf to remove the project entry, calls "epro" and "erf" to set the date off for the project, moves the pmf for the project to "oldpmf.archive" in case it is ever needed again, and calls deletedin to delete the project directory and all of its contents. Example: To delete project "Delta", type - u) dproj Delta - s) archive: Delta added to oldomf.archive - s) type - s) type - s) dd: do you want to delete the directory >udd>Delta?? - u) yes - s) \$ do a "new_smf" - s) r 1557 12.558 40+34 Notes: If you answer "yes" to the question about deleting the directory, the project directory and all segments and directories inferior to the project directory will be deleted. The project will be charged for disk usage until the project directory is deleted. If you answer "no", the project's directory and segments will not be deleted, and the project will continue to accumulate storage charges. Do not answer "no" unless there is some exceptional reason for doing so, since the project directory will have to be deleted later by an unrestricted system administrator. Chapter 3 Administrator Commands install Operation: Install system table Command: Install Usage: This function is used to install a system table. It can be used when the table has already been converted, in case a previous installation request failed due to a crash. Example: To install the current pnt, type - u) Install PNT.ont - s) r 1557 12.558 40+34 - s) Signal from System Control process: PNT Installed Administrator Commands Ison Operation: see if person is registered Command: Ison <u>Usage</u>: This function types "true" or "false" depending on whether a person is registered in the put or not. It then lists all users in the user registration file who have a last name which matches the argument. Example: To check whether the user "Jones" is registered, type - u) Ison Jones - s) true - s) Userid for "Jones, Herbert R." is "HJones" - s) Userid for "Jones, Peter" is "Jones" - s) Userid for "Jones, W. Alfred" is "Ajones" - s) Number of users with last name "Jones" is 3 - s) r 1557 12.558 40+34 Chapter 3 Administrator Commands labels <u>Operation</u>: print mailing labels <u>Command</u>: labels <u>Usage</u>: This function prints a set of mailing labels offline. Example: To run the labels, type u) labels s) r 1557 12.558 40+34 Administrator Commands | m I | sc | | | |-----|----|------|------| | | |
 |
 | Operation: process charges and credits Command: mlsc Usage: This function is used to input miscellaneous charges and credits. For each transaction, the project ID, the amount (negative for a credit), and an explanation are required. Each transaction will result in a separate line on the monthly bill. The transactions are stored in "miscfile", and the total is also placed in "projfile". All three input items for a transaction may be put on the same line, or they may be supplied one at a time. The program will indicate the type of item to be input next. Typing "x" instead of a project ID exits from this function. <u>Example</u>: To credit project "Alpha" for a crash, and charge project "Beta" for some manuals, type - u) misc - s) proj - u) Alpha - s) amt - u) -10.55 - s) explanation - u) system crash 6/23 Jones - s) prol - u) Beta 4.50 Manuals Smith - s) proj - u) x - s) r 1557 12.558 40+34 Chapter 3 Administrator Commands new_proj Operation: add new project Command: new_proj Usage: this function is used to add a new project. Example: To add new project "Gamma", giving the user "Fooch.Gamma" project administrator status (i. e. write access on the project directory — the project is not delegated), and setting an initial quota of 100 records, type - u) new_proj Gamma Fooch.Gamma 100 - s) archive: Gamma appended to pmf.archive First, the system asks for the project title. This field should be a short description of the purpose of the project. It may be up to 52 characters long. - s) type type title - u) Gamma Ray Research Next, the system asks for the name and address of the principal investigator. This is the individual to whom the usage report will be addressed. Both name and address may be up to 32 characters long. - s) Inv - u) Prof. Q. X. Jones - s) inv addr - u) MIT 39-895 Next, the system asks for the name, address, and telephone of the project supervisor. This is the individual in direct contact with the project's day-to-day activities. He may be the same person as the principal investigator, or he may not. Often, he is registered as a user or project administrator for the project. The name and address may each be up to 32 characters long. The telephone number may be up to 16 characters long. - auz (z - u) Mr. Melvin Fooch - s) sup_addr - u) MIT 39-896 - s) sup_phone - u) MIT x1234 Administrator Commands new_proj At this point, the system has finished adding the project to "projfile". You are now asked if you wish to review and correct the entry (by typing "p" and then perhaps "c") or if you wish to continue with the registration procedure (by typing "file"). - s) type - u) file Now, the system adds an entry for the project to the requisition file, "reqfile", first asking for the external account number and requisition or purchase order number. - s) type account - u) 11792 - s) req - u) 123456 The system next asks for the cutoff limits for the project. The funds limit is a dollar amount (enter "0" to show an "open" amount). The date cutoff limit is a date, expressed as either "mm/dd/yy" or "mmddyy". If the project exceeds either of these limits, all users on the project will be prevented from logging in, but the project will continue to incur disk and registration charges until you delete the project. - s) funds - u) 0 - s) cutoff - u) 7/30/72 Next, the system asks for the name and address to which charges incurred by the project should be reported. The name and address may each be up to 32 characters long. - s) name - u) Fiscal Office, Attn: L. Spottswood - s) addr - u) MIT 1-101 At this point the project has been added to the requisition file. You are now asked whether you wish to review and edit the entry (by typing "p" and perhaps "c") or if you wish to finish registering the project (by typing "file"). | Multics | System | Administrator's | Manual | |----------|--------|-----------------|--------| | 01/09/73 | \$ | | | | Administrator | Command | S | |---------------|---------|---| |---------------|---------|---| new_proj u) file s) % do a "new_smf" s) r 1557 12.558 40+34 Page 44 rev 3 Chapter 3 Administrator Commands new_smf Operation: convert smf to sat and install Command: new_smf <u>Usage</u>: This function is used after any change is made to the smf. It converts the smf to a binary sat, reruns "daily_summary" to insert cutoff codes, and requests the initializer to install the new sat. Those functions which make changes to the smf will remind the administrator to do a "new_smf". Since this function is time-consuming, it should be done at the end of a bunch of changes. #### Example: - u) new_smf - s) r 1557 12.558 40+34 - s) Signal from System Control process: SAT Installed Administrator Commands pmf Operation: Edit and convert pmf, install pdt Command: pmf <u>Usage</u>: This function is used to do arbitrary editing of a pmf. It throws the administrator into the dedx editor after reading in the segment, and allows him to make any changes he wants. Because dedx is complicated to learn, this function is not for beginners. After the administrator exits from dedx, the function converts the pmf to a pdt, and signals the initializer to install the pmf. The function takes care of updating "pmf.archive" as well. Example: To edit the segment "Operator.pmf", type - u) pmf Operator - s) Edit. - u) (editing commands) - u) w - u) a - s) r 1557 12.558 40+34 - s) Signal from System Control process: PDT installed Administrator Commands proj_mtd Operation: month-to-date report Command: proj_mtd <u>Usage</u>: This command types a month-to-date report for any project's usage. The report lists all users on the project and their dollar totals, as well as disk and miscellaneous charges. <u>Example</u>: To get a report of the usage for project "ALPHA", type - u) proj_mtd ALPHA - s) Month to date for proj ALPHA | s) | Name | logins | char ge | |----|--------------|--------|--------------| | s) | White | 11 | \$
133.41 | | s) | Brown | 0 | \$
0.00 | | s) | 2 users | 11 | \$
133.41 | | s) | registration | | \$
20.00 | | s) | misc | | \$
0.00 | | s) | disk | | \$
176.08 | | s) | Total | | \$
329.49 | s) r 1557 12.558 40+34 Chapter 3 Administrator
Commands recov Operation: generate omf from pdt Command: recov <u>Usage</u>: This function is used if a project's PMF is destroyed. The function generates a new PMF from the system's binary PDT. Example: Suppose the project "Proj2" loses its pmf. To get a new one, type - u) recov Proj2 - s) r 1557 12.558 40+34 Chapter 3 Administrator Commands register Operation: Register new person Command: register <u>Usage</u>: This function is used to register a new person-id. It enters him in the "urf" and in the "pnt". If a person is already a user of Multics, or if he was once registered and was not removed, this function should not be used since the user will still be in the urf and pnt. Enter "stop" at any time to abort the processing of the current user, for instance if you have misspelled his last name, or if he is already registered. Example: To register a user, the dialogue goes like this: - u) register - s) Enter full name (Last, First I.) - u) Smith, Robert M.: Prof. - s) Enter mailing address - u) MIT 39-575 - s) Enter programmer number or "none" - u) 6789 - s) Enter default project - u) Language - s) Password: - u) wugga (the printer is turned off) The system will attempt to generate a unique person ID for the person being registered, by trying first his last name alone, and then his last name prefixed by his initials. If either of these guesses succeeds, the system makes a tentative assignment and asks if the person ID is acceptable. If neither of the guesses succeeds, and if you reject the system's guess, the system will ask you to specify a person ID, and will then check to make sure that the ID is unique. - s) Userid "Smith" is already used by "Smith, Frank X." - s) Trying "RMSmith" for userid. - s) Userid assigned is "RMSmith" - s) Is this ok? - u) no - s) Please suggest a userid for "Smith, Robert M." - u) RSmith - s) Userid assigned is "RSmith" Chanter 3 | Administrato | r Commands | |--------------|------------| |--------------|------------| |
 | | | |------|------|---| | reg | Iste | r | |
 | | | - s) Is this ok? - u) ves At this point, the user has been added to the user registration file and the PNT. You may now add more users, or if you are finished registering users, you may install the PNT immediately or later. - s) More users to add? - u) no - s) Install now? - u) yes - s) Installing new pnt. - s) Installation completed. - s) r 1557 12.558 40+34 - s) Signal from System Control process: PNT installed Administrator Commands rename_proj Operation: rename project Command: rename_proj <u>Usage:</u> This command is used to rename a project. Example: To rename project "AAA" to "888", type. - u) rename_proj AAA BBB - s) Now do a "new_smf" and then a "pmf BBB" - s) also change default project for users on BBB - s) r 1557 12.558 40+34 - u) new_smf - s) r 1557 12.558 40+34 - s) Signal from System Control Process: SAT Installed - u) pmf BBB - s) Edit. - u) q - s) r 1557 12.558 40+34 - s) Signal from System Control Process: PDT installed Chapter 3 Administrator Commands ram Operation: request statistics to be printed Command: ram <u>Usage</u>: This function requests the dprinting of a report for all administrators. The single argument is the name of a segment to be dprinted. <u>Example:</u> To send a copy of the disk usage report to all administrators, type - u) ram diskreport - s) r 1557 12.558 40+34 Administrator Commands setcrank, setdisk <u>Operation</u>: Schedule absentee lobs <u>Commands</u>: 3.34 setcrank, setdisk <u>Usage:</u> These commands do the initial scheduling of the absentee lobs described in chapter 5 (page 62) which perform daily accounting. Unless the absentee lobs crashed or the absentee lob queues were lost, there is no need to execute these commands. to check whether a lob is scheduled, type lar -aueue 1 -long If the lobs "dodrp" or "crank" are not scheduled, execute "setcrank" or "setdisk" as appropriate. Chapter 3 Administrator Commands undelegate <u>Operation</u>: Undelegate a project <u>Command</u>: undelegate <u>Usage</u>: Execute this command if you have delegate a project to some user, and wish to regain control of it or delegate it to some other user. Example: To change the project "BLAH" from control by Smith.BLAH to control by Jones.BLAH, type - u) undelegate BLAH - s) archive: BLAH appended to pmf.archive - s) \$\$% do a new_smf - s) r 1557 12.558 40+34 - u) delegate BLAH >udd>BLAH>Jones Jones.BLAH - s) archive: BLAH appended to delegated_pmf.archive - s) \$\$\$ do a "new_smf" - s) r 1557 12.558 40+34 - u) new_smf - s) r 1557 12.558 40+34 - s) Signal from System Control Process: SAT installed Chapter 3 Administrator Commands upmf Operation: add user to project Command: upmf <u>Usage</u>: This function adds a user to a project. It is used only on projects which are not delegated. The function extracts the project's pmf from "pmf.archive", edits the pmf to add the new entry, converts the pmf to a pdt, signals the initializer to install the pdt, and replaces the edited pmf in "pmf.archive". Example: To add user "Jones" to project "Gamma", type - u) upmf Gamma Jones - s) r 1557 12.558 40+34 - s) Signal from System Control process: PDT installed Administrator Commands Other commands Operation: other commands <u>Commands</u>: epro, erf, mail, help, logout, status, listaci, listcaci, lar, car, mq, gq <u>Usage</u>: Consult the MPM and the MPM SPS for details on the usage of these commands. A short explanation of each follows. car cancel absentee request. Use this function if an absentee job is scheduled too many times by mistake. I I mes by misiake. enro edit "projfile". Use this function to change a project's supervisor name, title, etc. erf edit "reafile". Use this function to change a project's account number, requisition number, funds, cutoff date, etc. ga getquota. Use this function to print a directory's disk quota and usage. help print information on command usage. lar list absentee requests. Use this function (usually with the "-q 1" argument) to list your absentee requests. listact list access control list. Use this function to check accessibility of a segment. listcacl list common access control list. Use this function to check accessibility of the contents of a directory. logout log out from Multics. mail read or send mail. To read mail sent to you. type mail To send mail to some other user, type mail * Person Project and then type your message, ending with a line consisting only of ".". Page 56 rev 3 Chapter 3 Administrator Commands Other commands m q movequota. Use this function to shift quota to a directory from its superior. status print information about a segment. Use this function to see when a segment was created. #### Chapter 4: Billing The following is a short explanation of the monthly billing process and the information used in monthly billing. The most important thing to remember is that the monthly billing process consists mostly of a print pass over the saved PDT's and a print pass over "reqfile". Other information is also taken from "proffile", "miscfile", and "billing_footnote". No pricing out of usage is done during the billing process: this has all been done during the daily processing. 4.1 Output from billing The reports output from the monthly billing process are: - 1. long_bill this report is a complete breakdown and justification of charges for each project. For each project, the bill will have from one to four sections: - a) charge summary, by user - b) Interactive usage, by user - c) absentee usage, by user - d) I/O daemon usage, by user In addition, the charge summary shows the project's disk and miscellaneous charges, lists the current prices, and may have a footnote intended as a message to all project supervisors. - 2. short_bill this report consists of just the charge summaries from the long bill. The prices and footnotes are suppressed. An elaborate grand total page is printed. This report is intended for the use of system administrators and facility directors, who find the long bill too bulky. - 3. bill this report is a listing, by account number, of the charges made to each account. One line is printed for each project, showing the charges this month and the charges to date, face amount, and requisition balance. - 4. msum this report is the monthly summary. It has one line per requisition or purchase order, and gives the same information as in "bill". - 5. cards at the MIT installation, this deck is punched for Billing transmittal to the MIT General Accounting Office. The program "punch_MIT_deck" produces this segment. The peculiar format of the cards and the many ad hoc decisions in the code are the result of the accounting office's requests. It is expected that other installations will remove all mention of this program, if they don't need any external record of charges, or that they will insert some local program which may or may not produce cards in place of "punch_MIT_deck". - 6. miscs.print this is a listing of all miscellaneous charges and credits for the month. - 8. dback this report is the result of an absentee lob fabricated by the billing process and run later. It lists every daemon session during the month in chronological order, and shows, for each session, who used the daemon, how much he used, and what shift and queue he used. - 9. system_month.report this segment gives a summary of Multics usage for the billing period. - 10. diskreport this report shows each project's disk usage for the month. It also has a map of every directory in the hierarchy which has a disk quota, giving its current usage, its charge for the month, and its quota. - 11. console report this report shows the usage of each terminal, sorted by terminal ID. For each user who used a given terminal, the total connect time during the month and the number of logins is shown. #### 4.2 Inputs to billing The input segments to the billing process and what of their contents is used are listed below. - 1. PDT's the copied odt segments in
>udd>SysAdmin>admin>safe_pdts contain the complete usage data for each user for the billing period. - 2. projfile this segment is used mostly to get the disk usage figures, which are stored there when a disk report is run. The project title and the name and address of the project supervisor are also used to create headings on Billing the long and short bills. - 3. reqfile this segment has the charges which are actually billed. Daily processing has updated "reqfile" from the figures in the PDT's, so the two should agree. (An error comment is printed if they do not, and the "reqfile" values are used.) The name and address of the person in charge of the account as well as requisition numbers, amounts, and cutoff dates are also extracted from this segment. - 4. miscfile this segment is the journal for miscellaneous charges and credits associated with a project. On both the short and long bills, all entries for a particular project are located in this segment and re-printed. (If the total of charges and credits in "projfile" does not match the total from adding the individual entries in "miscfile", an error comment will be printed and the total from "miscfile" actually billed.) - 5. billing_footnote this segment is optional. If present, all the text in it will be printed at the bottom of each project's usage summary. This segment can be used to announce forthcoming price changes, or make other announcements to the administrators for each project. It is printed on the long bill only. - 6. disk_stat this segment is used in the preparation of the disk report. - 7. today.use_totals this segment is used in the preparation of system_month.report. - 8. The accounting segments saved in the subdirectory "h" are also used in the preparation of "dback". Billing #### 4.3 Steps in billing The procedure for preparing a bill consists of three parts: preparation, actual running-off of the output, and cleanup operations once the bill is judged correct. The preparation phase consists of checking for any un-processed dormant accounting segments, and checking to see that a disk report has been run recently. #### bill prepare does most of this. The administrator should also make sure that the segment "billing_footnote" is up-to-date, and that all miscellaneous charges are input. The administrator may run a set of mailing labels at this time. The actual running of the bill is initiated by typing #### bill run MM DD YY BXXXXX where MM/DD/YY is the date of the last day of the month. The argument BXXXXX is used by "punch_MIT_deck" - other installations will probably replace this argument with others more appropriate to their needs. The "run" processing prepares all of the above reports and bills. It domints one copy of the bills in the highest queue before starting on the usage summary report. As soon as the administrator has examined his copy of the bill and found no gross errors, he may type #### bill accept MONTH #### which causes the following: - 1. derinting of many copies of the billing output and reports. The addresses for these reports are obtained from "value_seg". This derinting is done by the "rabill" function. - 2. Submission of absentee jobs to create the output reports "console.report" and "dback". - 3. Copying of the segments used to create the bill into the directory HF. The names of these segments are prefixed by the MONTH specified as an argument -- for example, "reafile" is copied into "HF>MONTH.reafile". Billing - Resetting of the various data bases for the next month. 4. program "reset_usage" Is run to subtract the user usage figures in the copied pdt's in >udd>SysAdmin>admin>safe_pdts the usage figures in the >system_control_dir>pdt, so that the month-to-date usage totals will start over for a new month. The program "up_ctr" is also run, to add the "charges this month" field "reafile" into the "charges this requisition", and reset the "charges this month". Any entries in "reafile" or "proffile" which are marked as having been deleted during the month are then deleted. - Resetting of the disk meters in the directory branches. The program "reset_disk_meters" is used to subtract the value of the time-page-product integrator used for charging (stored in "disk_stat") from the value in the branch. Once the bills have been mailed out, and everybody who should have a copy has got one, the administrator should delete the bills from the disk by typing bill delete The amount of storage required by the bills will vary, of course, depending on the number of users registered on the system, and the number of sessions used during the month. It may come to several thousand disk records. Be sure to have enough quota before starting the billing run. #### Chapter 5: Daily Processing The daily billing and statistics are produced through the agency of two absentee jobs which run every night, and which re-schedule themselves to run again the next night. The first job is the disk storage accounting. The second is the actual accounting-segment update run. Both jobs produce reports which are dorinted for the system administrator. #### 5.1 Use of Absentee The disk accounting job is controlled by the command segment dodrp.absin This job executes only one command, namely "disk_auto" and then logs out. The accounting-segment update run is controlled by the command segment crank.absin which also executes only one command, namely "crank", and then logs out. Each job reschedules itself in queue 1 for the next night, by executing the "enter_abs_request" command to re-submit the job. The time at which the job is scheduled is kent in value_seg, under the variable names "crank_time" and "disk_time". The disk report should run before the crank, in order to charge the most up-to-date disk figure to the users. The disk report lob is restartable, so that if the system crashes during its run, it will be rerun. The crank job cannot be restartable. If the system crashes and segments are reloaded, users might be double-charged or not charged at all for some usage. (See chapter 10, "Crash Recovery", for more information.) Therefore, the crank job is marked not restartable, and furthermore the variable "abort_crank" in value_seg is used to stop the crank from running again, if it crashes. When the crank is about to enter its critical region, it sets "abort_crank" to "true". When it passes the critical region, it sets "abort_crank" to "false". (Some parts of the job, those dealing with summaries and so forth, need not be protected.) When the crank first starts up, it checks Daily Processing "abort_crank", and if it is "true" it immediately logs out. #### 5.2 Disk reporting run See the writeup of "disk_auto" for details on what is done by the disk reporting run. The important result of a disk reporting lob, from the point of view of charging, is the storing of current disk usage figures in the segment "prolfile". These figures will be picked up by the accounting update lob later and used to charge the project for disk usage. ### 5.3 Daily accounting run (crank) The "crank" job executes a command of the same name in master.ec. This command performs the follwoing steps: - 1. reschedule the crank for tomorrow - 2. process all IO daemon records in >system_control_dir>IO__accounting which have not yet been processed and which have been completed. Call charge_daemon_usage to add this usage the the appropriage PDT entries in >system_control_dir>pdt. - 3. make a backup copy of the answering service version of the pnt. - 4. call odt_copy to copy all system odt's into safe_odts - 5. run "compute_bill" to charge user usage, from the pdt*s, to the appropriate entries in reqfile. - 6. run "daily_summary" to write a report giving account status and to modify the sat to cut off projects which are out of funds. - 7. Install the new sat. - 8. run "daily_log_process" to prepare log extracts for system programmers and administrators. - 9. run "copy_as_meters", "print_meters", "system_total", "usage_total", and "system_daily_report" to prepare a system statistical report. - 10. dprint copies of the ouput reports. - 11. check for the existence in >system_control_dir of any Daily Processing data segments which need processing. IO_accounting files and logs are processed automatically. Answering service dumps are automatically printed. The job sends a message to the system administrator reporting successful completion via the "send_message" command when it is all done. #### 5.4 Daily operation Every day, first thing in the morning, the system administrator should read the output from the crank. If it has not been dorinted because of a system failure, or because the output is lost, the administrator should log in and type "day" (see the write-up of "day" in chapter 3, page 32) to see the output. If everything ran correctly, the administrator merely replies "yes" to the "Delete?" question and logs out. If the output has been dorinted successfully, the administrator can avoid having it typed again on the console by executing "dayok" instead. #### Chapter 6: Adding a new Project New_prol is the tool for adding a new project. You will want to know the following: Supervisor User list (must have at least one user) account, requisition numbers funds termination date. billing address delegated? If so, what user Id and what directory initial quota The project ID can be the same as a person ID if you want. Projects which have been deleted and then return are a problem: try to avoid this. The sequence for adding a new project is: - 1. new_pro) (see page 41) - 2. new_smf (see page 44) - 3. register any new persons (see page 48) - 4. use "upmf" to add each person to the project (see page 54) - 5. delegate the project if requested (see page 33) You may batch several projects in step 1, of course, and do many registrations in step 3. ### Chapter 7: Adding and Deleting Users To add a user to an existing project, you use the tool "upmf". (see page 54.) If the user is not already registered, upmf will type
a warning message. If you get this message, register the user with "register". (see page 48.) To delete a user from a project, use the tool "domf". (see page 35.) The user will remain registered as a person, and his address and password will remain in the system. If the user is leaving the installation, and is not expected to return, you should not remove him from the urf and pnt immediately, since his name may be on some access control lists. For instance, if the person named "Jones" quits the company, it would be unwise to remove the name "Jones" from the user registration file right away: suppose someone else named Jones arrived the next day. When he was added to the system, he would have access to some segments which he should not have. The unrestricted system administrator's tool "remove_user" can be used to completely remove a user from the PNT and user registration file. #### Chapter 8: System Security This section deals with making and keeping the system secure. A system may be run loosely or tightly, but some security is necessary even if the installation does not care if resources are mis-appropriated. Security measures not only frustrate immature individuals, they provide insurance that accidents will not destroy the system, and provide information about what happened when something went wrong. #### 8.1 passwords Each registered Multics user has a personal password. This bassword is his personal property, and is associated with the person, not the user identity (combination of person and project). Project administrators need not know the passwords associated with the persons working on their project, although since the project administrator usually assists in getting a new user registered, he may know it. Passwords are stored in scrambled form internally within the system. Once a user's password is entered (via the "register" or "change" commands) it is not stored in readable form anywhere in the system-administration data bases. When the user attempts to log in, the password he types is subjected to the same scrambling transformation, and the scrambled values are compared. This procedure makes it fairly difficult for a user to obtain another user's password, even if he is given access to the ont by mistake. The password mechanism is the strongest protection feature in Multics: if users cannot be uniquely identified, then different access control rights cannot be granted. Users should be encouraged to keep their passwords private, and to change them often. Sensitive passwords, in particular, should be changed regularly. Users may now change their own passwords dynamically, by use of the "-change_password" argument to login. They should be encouraged to do so often. Once a user has changed his password by use of this login option, subsequent installations of the PNT will not reset the password. The "chpass" administrator command will continue to work though, since it uses the program "pass_util" to modify >system_control_dir>pnt directly. The answering service keeps various counters in the PNT regarding the use of a password. In particular, the system counts System Security incorrect passwords, and can type a message to a user at login informing him how many times his password has been given incorrectly since its last correct use. This feature may alert a user that someone has tried to guess his password. #### 8.2 Access control Access control is the system's second major line of defense. Consult MPM sections I.2.6 and II.3 for an explanation of the mechanism. Properly set, the access control mechanism can make the system very secure, at the cost of some inconvenience. Access control works only if user identities are held secure. This is the reason that person identifiers are assigned only by the system administrator: otherwise, a clever project administrator could register an identity which corresponded to some name already on an access control list somewhere in the system, and so be able to log in and use this access control list entry for a purpose not foreseen by the creator of the ACL entry. The general principle to apply is that no user should have write access to any system data base unless there is a good reason. Those faw, trustworthy individuals who may modify system data bases should be impressed with the fact that they should not use the privilege casually. It is a good idea to run an absentee job occasionally which spot-checks the access control lists on system segments to make sure that something has not been left unprotected inadvertently. The question of read access is less clear. It is possible to prevent users from reading anything except their own directories and their contents, or one can leave most of the system readable. Two specific cases are interesting: the choice between "e *.*.*" and "re *.*.*" on the CACL of >user_dir_dir makes the difference between users being able to tell who is registered on another project or not. The access control list on >system_control_dir>answer_table makes the difference between one logged-in user being able to determine another user's process id without permission and not. Currently, the system is slightly deficient in that the SysDaemon and SysAdmin users have far too much power. Someday, we will change the system to lock the daemons into subsystems which cannot execute any but carefully-checked commands, and we will remove most global access rights, either getting along without them or accomplishing them in lower rings with lots of checking. As the system stands now, disclosure of a SysDaemon or SysAdmin password opens the system up completely. In the future, it would be nice to have the system secured to the point where no major System Security breach of the system's segment security could be accomplished without entering the machine room. #### 8.3 Telephone line security Tapping a phone is very easy. If sensitive data, such as passwords, are transmitted by phone, the system is no more secure than the telephone connection box. An installation which thinks It is worth the trouble to protect against this sort of potential problem could consider dedicating GIOC channels to daemons and administrative special-purpose uses such as operations. The privileged users could then have start_up.ec segments which logged out if they were not invoked from the proper channel. Consoles on these dedicated channels could be hard-wired if close enough to the GIOC (there are other good reasons to do this) or could be connected over dedicated telephone lines, perhaps even with a pair of the "scrambler" data sets which are available commercially. #### 8.4 Terminal ID codes If the terminals used on the system identify themselves with an ID code, it is often easy to track down what terminal was involved in a security breach. We are considering a method of restricting use of the system by using terminal ID codes, as an optional feature. Since these ID codes can always be faked, one cannot rely on this feature alone. But if terminal ID is free on a terminal you are considering, definitely get it. The program "console_report" is used to produce a listing of all terminals by ID code, with the list of users who used the terminal during the month. #### 8.5 Use of the log segment The program "daily_log_process" can be used to monitor system operation by setting up its log_select_file to watch for conditions of interest. The version provided with the system will create a full log of all events, a log of all "interesting" events for system programming, and special logs for absentee problems and network problems. This segment can be edited as necessary to monitor specific individuals, or specific terminals. #### 8.6 Cross-checking in the billing process It is very hard for any user to get away with using Multics resources without leaving some traces. Even if someone gets Chanter 8 System Security logged in on a system administrator identity, and attempts to fudde the accounting records to conceal the fact that he logged in, most usage is recorded in more than one place. Unless the thief figures out how to patch all of the usage data, some accounting program will produce a "discrepancy" comment. #### 8.7 Machine-room security It is not always necessary to run the facility like Fort Knox in order to decrease the chances for security breach substantially. If the general principle of having only operators or accompanied visitors is established, if output is distributed outside the computer room and users are not allowed to hang over the operations consoles, and if users are not allowed to mess with the machine when it is down, most possibilities for problems will be eliminated. #### 8.3 Tabe security If users can walk off with dump tapes, or mount them for themselves, the storage system is not at all secure. Work is currently going on concerning the design of high-quality detachable media seculty measures. #### 8.9 What to to after a breach. Once the administrator finds out that someone has used a password he shouldn't have been able to, what does he do? Partly, the answer depends on what kind of problem has occurred. Clearly, all sensitive passwords should be changed simultaneously. Date and time modified of all segments should be checked, to see what has been changed. Prints of the logs and accounting segments should be made and cross-checked. Consider a complete reload. #### 8.10 Password trap The answering service maintains a "trao" flag in the PNT, in each user entry. By using the program "pass_util", a system administrator can cause this flag to be set on. Whenever the person logs in, a message will be typed on the initializer and filed in the log, remarking that the password has been used. No indication that this has happened is given to the user. This feature can be used when you suspect that a certain password has been compromised and you wish to catch the fellow red-handed. Since the terminal ID and channel number are typed in the message, it is often easy to locate
the user. There is another Multics System Administrator's Manual 01/09/73 Chapter 8 System Security flag which may be set, which "locks" the password, without changing it. (As a matter of fact, the user may even change his password while it is locked.) The user will be unable to log in if his password has been locked. The incorrect password counter mentioned in section 8.1, and the identification of the terminal from which the last bad password was issued, are also stored in the PNT. The system administrator may also choose to set an entry in the system message table to cause a user to receive a "blast" message whenever he is logged in and someone attempts to log in with the same name, project, and password. This feature may alert the user to the fact that his password has been compromised: It is also useful in some cases of network use, since a user may log in from a remote host which then goes down without informing Multics—— If the user then attempts to log in via some other network route, the blast message sent to the first instance of the user will cause him to be logged out. #### Chapter 9: Storage Quota Management Disk storage accounting is done by a self-rescheduling absentee job, as described in chapter 5. A byproduct of this process is a list of all projects which are low on disk. The administrator responsible for disk should attempt to give enough disk to all projects to allow them to keep operating. If prices are set correctly, this will always be profitable until the time comes to expand the building housing the computer. If sufficient quota is available on >udd to satisfy a project's need, all the administrator needs to do is to type movequota >udd>Prol INCR to increase the storage available to Proj by INCR records. To generate more quota on the system, do a setquota on the root only either from the initializer console or via "sac", and then move the quota down to >udd, as follows: sac "sq > 3000: mq >udd 1000" supposing that the root quota is normally 2000. It is permissible to have more quota allocated than is physically available. The acutal amount of overallocation, depends on how fast the community uses up quota and how closely the disk quota is watched; this can be determined only by experience. Caution in this process is recommended, because the system crashes if it runs out of space. For more discussion on this point, see section 13.1 (page 86). #### Chapter 10: Crash Recovery If the system crashes while running the crank, a flag will have been set which prevents the crank from running again until the state of the accounting segments is determined. (This flag is the variable "abort_crank" in value_seg.) The various programs in the crank have been planned so that they can be re-run without ill effect, whenever possible. The first thing to do is to examine the absout file produced by the crank, to see what the crank was doing when it was interrupted. Next, check the date and time modified on the segments in >system_control_dir and the segments in >udd>SysAdmin>admin, and confer with operations to make sure that no files were backed up due to a reload. Usually, at this point, it is possible to use the editors to create an exec_com file which consists of the remainder of the steps in the crank, and then to execute it on-line. In some cases, data which was lost may be regenerated: for instance, if "projfile" is lost, you should retrieve a copy, use "epro" to add any projects which were added since the copy you have, and to edit any other entries which changed, and then re-run the disk report to recalculate the project usage. It is difficult to provide a fool-proof prescription for recovery, since what must be done depends on what segments were lost or damaged. If your investigations seem to show that all is well, type value\$set abort_crank false to allow the crank to run again. Do an "lar" to make sure the crank and disk report jobs are scheduled. If not, do a "setcrank" and/or "setdisk". #### Chapter 11: Setting up Accounting There are two situations of interest concerning accounting setup. The first concerns the startup of accounting at an installation which has never had a Multics before — this is called an "accounting cold start". The second concerns the modifications necessary for an installation which receives a new distribution of Multics, with significant changes to the accounting package which may require the reformatting of segments, or other modifications, in order to continue to operate. #### 11.1 Accounting cold start Accounting cold starts are supported by the exec_com segment acct_start_up.ec which is distributed as part of the system libraries. In general, all that the local installation need do is, on its first successful bootload, enter admin mode on the initializer and type ec acct_start_up cold and then follow instructions. #### 11.2 Accounting warm start Although some work has been done on designing an accounting warmstart, the supplied procedures may have defects if you are upgrading more than one level of accounting system in a jump, or if you have made modifications to the supplied accounting procedures for support of local installation features. It is imperative that you study and understand the contents of acct_start_up.ec before executing them. Read both the cold and warm start sections. The warm start procedure is designed to upgrade the accounting system from the previously-distributed level to the new level: If it looks like it will work, you may type ec acct_start_up warm from the initializer console. As of this date, no general accounting-distribution procedure has been developed. This deficiency in the system will be corrected, module by module, as time permits. In the meantime, the best thing to do is to read the exec_com and skip those steps which look like they would Setting up Accounting destroy data. Pay careful note to the header of the SAT which is created by the coldstart. If your SAT header does not look like this, you may need to change the default attributes. It is a good idea to at the very least reconvert the SAT, via "new_smf", and reinstall it. It cannot hurt to recompile all PDT's and reinstall them too. Delegated projects may be a problem here. If the format or contents of the PDT changes in such a way that this step is absolutely necessary, a conversion program will be supplied. Examine the segments created by the coldstart. If you don't have any of them, execute that section of the coldstart which creates tham. The seament bound_admin_old_ contains programs which used to be nart of the system administration subsystem, but which have been obsoleted. The programs in this bound segment are sometimes used for conversion from one level of the accounting system to the next. #### 11.3 Local Installation parameters Most installation parameters used in the operation of the administrative system are kept in the segment "installation_parms". The standard accounting cold-start exec_com segment sets these parameters to the MIT values, in most cases. A discussion of each parameter follows. #### 11.3.1 Shifts System usage may be divided into up to eight shifts, numbered from 0 to 7. These shifts may begin at any half-hour during a week: the current shift is the same for everyone, and the shift is the same at the same hour during every week. There is currently no provision for over-riding the regular shift mechanism to account for holidays. Shifts are set by filling in a table which contains 336 entries, one for each half-hour in the week, with a digit from 0 to 7. At MIT, we use only shifts 1, 2, 3 and 4, and the hours are: shift 1 0800-1800 weekdays shift 2 1800-2400 weekdays shift 3 0000-0800 every day shift 4 0800-2400 weekends Setting up Accounting #### 11.3.2 Shift prices Prices may be set for CPU time, connect time, process time, core usage, and device usage on a per-shift basis. The current mechanism does not actually generate any charges for any but CPU and connect time. Later versions will distinguish between connect time and process hours, to allow multiple processes per user and multiple terminals per user; we will also implement core charging and device channel usage charging. Any installation may, of course, set the prices for some resources to zero and use other administrative means to control resource usage. The calculation of the proper price for the use of a resource has been the subject of endless argument. Every local installation will have its own special way of computing these rates. method we have evolved at MIT is the following: first, we list all costs involved in running the service. This includes programmer and operator salaries, cards and paper, hardware rental, and modems. (Desired profit or planned loss could be included -- we attempt to break even.) These costs are then attributed to cost pools, one for each resource which is chargeable. Resources which cannot be attributed to the cost of providing a particular service, such as operator salaries or the motor generator, are lumped in the category "overhead," and the cost of this pool is spread proportionally over the others. Each pool's cost is then divided by estimated paying-customer usage, to obtain a "break-even price." These figures are then fudged to make reasonable prices. If an estimate is uncertain, we round up strongly. For shift differentials, we use the following table: shift 1 115% of break-even shift 2 90% shift 3 50% shift 4 80% We also usually round the shift prices up to the nearest multiple of \$.50 per minute, just to make the prices easy to remember. The program "price" is available to interested system administrators from T. H. Van Vleck; it mechanizes the pricing philosophy discussed above. #### 11.3.3 Installation ID and titles Installation_parms contains the 32-character installation ID field which is typed out when a user dials up. This should contain both the company and department abbreviation, and the city and state. For example, Setting up
Accounting MII, Cambridge, Mass. The installation titles are longer character strings, returned by the program system_info_\$titles, which are used at the too of each page of the monthly bills and in many other reports. There are two strings, the company name and the department ID. Both strings are entered twice, once single-spaced and once double-spaced. For example, Massachusetts Institute of Technology Information Processing Center and Massachusetts.... Locally-written administrative tools should, of course, use these titles so that they can be exported to other installations. #### 11.3.4 Miscellaneous parameters The maximum time allowed for a login time, the cycle time between initializer accounting updates, and the maximum inactive time before automatic logout for a normal user are all given in seconds in installation_parms. The number of login tries a user may have before the system hangs up on him is also specified there. The usual values for these parameters are: inactive_time 15-90 mlns. warning_time 3-5 mlns. login_time 3-5 mins. (more if noisy lines) acct_update 10-60 mins. login_tries 1-4 These values may be modified according to the needs of the installation. The ranges given are reasonable limits, though. For example, the accounting update cycle should not be too small, or initializer time will go way up, and it should not be too large unless the system hardly ever crashes, or revenue will fall off. Consult the SPS writeup of the ed_installation_parms command for more information. #### 11.3.5 Messages Installation_parms also contains the messages typed out on the user's console if his account is out of funds, nearly out of Setting up Accounting funds, past its termination date, or nearly past its termination date. We put the telephone number of the User Accounts Office in these messages, to make sure the user knows who to call. #### 11.3.6 Daemon and absentee rates These rates are kept in installation_parms, in an item named "queue". Absentee CPU and real-time prices are stored by queue, as are IO daemon rates per 1000 lines. Queues one through four may have rates set. #### 11.3.7 Absentee "timax" parameter The scheduling priority for a Multics process is calculated by scheduler by a complex algorithm which takes several factors into account. Consult the MPM SPS for the details of this calculation. For system-administration purposes, what important is that each process, when it is created, is assigned a parameter called "timax", which limits the depth to which the process may sink in the scheduling queues. Interactive processes are assigned the default timax, which is currently 8000000 microseconds. The timax value for absentee processes, however, is obtained from installation_parms, and may be different for different queues. A larger number will allow a lower queue: at MIT, we set all queues to have a timax of 16000000. This means that absentee jobs sink rapidly to the bottom of the queues, where they are given relatively long CPU time limits, and that interactive users will always get better response than absentees. By setting the values associated with the item "timax", an installation may experiment with other values for the absentee timax. #### 11.3.8 Configuration Table A table is kept in "installation_parms" which describes each of the system configurations which an installation will use, by the number of CPU's, number of 64K memories, and shift. For each such entry, the table contains the value of the maximum number of load units allowed on the system, the maximum number of absentee users allowed, the highest-numbered (lowest-priority) absentee queue from which jobs will be run, and two response control parameters. Unless automatic adjustment of maxunits has been disabled (see the writeup of "admin" in the SPS, and the operator command writeup of "maxu"), this table will be referenced to set maxunits whenever the system is brought up, whenever the shift changes, and whenver the system configuration changes. The configuration is looked up in the table, and maxunits and the Setting up Accounting absentee maxima are changed. If response control is enabled, the system will attempt to adjust maxunits on every login and logout, so that the average queue length falls between the "low" and "high" values. Maxunits will be increased whenever the average queue length is below "low": it will be decreased whenever the queue length is above "high": and it will be set to the current number of users whenever the queue length is between "low" and "high". The order of the elements in the configuration table is significant. The elements should be in order by number of CPU's, within that by number of memories, and within that by shift's smaller numbers first. The lookup will continue as long as any table element is less than the value being looked up, so that an element sepcifying 9 CPU's, 100 memories, and shift 8 will always stop the lookup. This feature can be used if, for instance, your installation does not wish to have different parameters depending on shift: instead of having eight table entries for each combination of CPU and memory for shifts 0-7, you may supply only one entry, which has a shift number of 8. #### 11.4 Runtime constants in value_seg The symbol-table segment value_seg is used, with the active function value, to insert certain installation-variable parameters into the operations conducted by the master exec_com. The most important of these values are | crank_time | the time of day that the crank runs | |----------------|---| | disk_time | the time of day that the disk accounting runs (this should be before the crank) | | admin_addr | address, in dprint header, of system administrator | | accts_addr | address, in dprint header, of system accountant (user accounts office) | | directorX_addr | addresses, in dprint header, of directors (currently, up to 7 may be named) | | abort_crank | "true" if crank is to abort, else "false" (see section 5) | | sysa_addr | address, in dorint header, of system assurance | Setting up Accounting sysprg_addr address, in dprint header, of system programmer admin_online person and project id of user to send "crank ran" message to log_number current number of log segment being processed The critical values are set to reasonable values by the accounting coldstart. they may be changed with the value\$set command. The command "value\$dumo" may be given to type out all values in value_seg. If the various addresses in the dprint header are set to "skip", the "rqm" and "rqbill" commands will skip orinting of the corresponding copy of the file. #### 11.5 Modifications to the exec_com segments Some installations may wish to build additional administrative tools and insert calls to them into the copies of master.ec and biller.ec which are used by the local system administrator. In particular, most installations will wish to remove the call to punch_MIT_deck from the monthly billing and insert something more appropriate to their own needs. This is easy to do, since the system-library copies of the exec-coms are copied into >udd>SysAdmin>lib. It is a good idea, though, to keep careful notes on what modifications were made to the segments and why, so that the changes can be made again after a new version of the accounting package is distributed with a new system version. #### 11.6 Load control group table Consult chapter 14 (page 89) for information on the system parameters which control the load control facility. Note that setting up load control requires determining what groups are required and which projects belong in each group, and then deciding how much of the system maxunits each group should be These decisions require some picture of the able to occupy. normal load pattern of the system, as well as knowledge of the priorities attached by management to individual projects. Installations which are just starting up should probably being with lust two groups, "System" for the system users such as daemon processes and other uses which are "part of the system", and "Other" for everybody else. If significant system programming work will be done on the system, a group for the system programmers -- those on the project "Multics" -- may also be necessary. Setting up Accounting #### 11.7 System Message Table Answering services numbered 6.12 and higher make use of a special system facility to allow local installation replacement of all answering-service produced messages to users, without modification to the code in bound_user_control_. The unbound segment as_error_table_ may be replaced by an installation to tailor the messages typed out by Multics to local installation regulrements. The procedure for modifying a message is quite simple: a system programmer edits as_error_table_.et to modify the text of the message, compiles the segment via error_table_compiler and alm, and installs the new system message table. Several of the entries in the message table are actually format strings for loa_. These items may be edited, but the data-transmission items in the format must, of course, remain in the same order. If the installation does not wish to have some of the messages typed by the system, it may choose to make the text of the messages null in the table. For example, to suppress the "Last login was..." message, the following line should replace the statement for "last_login_msg" in as_error_table_.et: last_login_msg: !!!was,: #### Chapter 12: Special User Identities Several special user identities are built into the organization of the Multics system, or are referred to by the documentation by name. This section describes the various special identities and their peculiarities. #### 12.1 Full system administrators Full system administrators are users on the project "SysAdmin" who have the normal initial procedure, "process_overseer_". Since they have potential write access on every segment in the
system, and since they may access the highly-privileged gate "hohcs_" and the privileged gate "phcs_", they can cause great damage to the system by inappropriate execution of a command. #### 12.2 Restricted system administrators Restricted system administrators are users on the project "SysAdmin" who have the special initial procedure, "accounts_overseer_". This program allows them only a small set of innocuous commands, and the ability to execute any function contained in the segment "master.ec". A great deal of self-checking is built into the command sequences contained in "master", so that a non-programmer can be trained to operate as a restricted system administrator. #### 12.3 IO.SysDaemon The IO daemon has control of the printers, readers, and punches on the system. Its initial procedure is "daemon_exec_". The daemon is special in that it has write access on the daemon queues contained in #### >daemon_dir_dir>io_daemon_dir so that it may remove processed requests from the queues. The ID daemon does its accounting in the segment "IO_accounting" in >system_control_dir. Excepte when it is in the procedure "act_ctl_" it has no access to segments in >system_control_dir, to prevent users from requesting prints of the password segment. The project "SysDaemon" and the user "IO.SysDaemon" have the "multip" attribute flag, so that the IO daemon can be logged in more than once, in order to run more than one printer. Chanter 12 Special User Identities #### 12.4 Backup.SysDaemon The Backup daemon operates in ring 1, instead of ring 4, so that it may dump all segments which are part of the hierarchy. It comes up in ring 1 because the statement #### ring: 1, 1: has been added to its pmf entry in "SysDaemon.pmf", and because the smf gives permission to SysDaemon to have users log in In lower rings because it has the statement #### ring: 1, 7: in the pmf entry for the project "SysDaemon". Its initial procedure is "process_overseer_". This user has special access rights to all directories on the system, through the medium of the SPACL. #### 12.5 Dumper.SysDaemon The Dumoer daemon is used to perform complete dumps of the hierarchy. It is otherwise just like Backup.SysDaemon. #### 12.6 Retriever.SysDaemon The Retriever SysDaemon is used to retrieve user segments from complete or incremental dump tapes. It operates in ring 1, and its initial procedure is "process_overseer_". It is on the SPACL. #### 12.7 Translator.SysDaemon (obsolete) The Translator daemon has been eliminated, now that absentee is a regular facility of Multics. It represented a potential security hole in the system, since it attempted to write segments in the user area, and could have ended up writing segments which were accessable to *.SysDaemon but not to the user. #### 12.8 Ring_1_Repair.SysDaemon This user comes up in "process_overseer_", but in ring 1. This is the only user who can execute any command from the console in ring 1. This identity is used to fix problems with access control in ring 1. The password for this user is kept in a sealed envelope in the operations area. Special User Identitles #### 12.9 Repair.SysDaemon This user identity is provided for evergency fixes by system programmers who need SysDaemon access privileges. The password for this user is kept in a sealed envelope in the operations area. #### 12.10 Repair.SysAdmin This user identity is provided for emergency fixes by system programmers who need SysAdmin access privileges. The password for this user is kept in a sealed envelope in the operations area. #### 12.11 Network Daemon This user is logged in to provide the functions associated with the Network Control Process. Its "start_up.ec" segment brings up the network, and then monitors the operation of the network. The primary functions of this user are to assist in the initial connection between foreign hosts and the system, and to perform segment-transfer operations. #### 12.12 anonymous users Anonymous users are all given the access control ID "anonymous" instead of a person ID. Their usage is aggregated on the monthly bill and the statistics under the heading "Student Users". The "who" command lists them as "anonymous", and the "as_who" command lists them with a star in front of the name. There is no reason why an anonymous user cannot be a project administrator. #### 12.13 Fictitious persons Sometimes, a project wants to register a full user identity which corresponds to no real person. This practice will work, but should be discouraged unless a good reason can be advanced, since it tends to circumvent the access control mechanism. To add a fictitious person, type in the name of the real person in charge of the identity to the register command, preceded by an asterisk. "register" will then know that it should not attempt to generate a userid from the name, and will ask for the userid. The names beginning with asterisk will be skipped when mailing labels are generated from the urf. Special User Identities #### 12.14 Project Administrators Project administrators are registered Multics users who are in charge of some project. They need not be registered on the project they administer. A single user may be project administrator for many projects. Each project administrator appears in the smf entry for the project he administrates. He has a copy of the project's pmf, and may install a pdt which he creates from this pmf with cv_pmf, by use of the install command. The project administrator must be able to read "proj_admin_seg" in order to use the install command, and he must have "ea" access on the directory >system_control_dir>update in order to out the copy to be installed where the system can discover it. Project administrators should be trustworthy people. They should be told to appoint an alternate if they go on vacation, since it is difficult for a system administrator to run a project which has been delegated to someone else. #### 12.15 Project "Multics" Users on the "Multics" project are able to access the privileged gate "phcs_" to investigate the contents of the supervisor. Since they can, therefore, steal passwords from the input buffers, only responsible system programmers should be registered on this project. #### 12.16 Terminal repair The project "Terminals" should be set up with one anonymous user whose initial procedure is "terminals_overseer_" so that remote-terminal service personnel can login and check out a terminal. Bumping should be on, and a grace of only 5 minutes set. #### 12.17 System operators All system operators should be registered on the project "Operator". This provides them access to the system for the purpose of sending mail, document runoff, and harmless play. It is far better to provide them with a small amount of disk space and some CPU time of their own, than to discover them using the daemons for experimenting with the system. #### Chapter 13: Full System Administrator Operations There are several operations necessary to keep the system running smoothly which are not yet made into commands for a restricted administrator. #### 13.1 Disk quota moving The daily disk report lists all those projects which are low on disk quota. Some of these projects deserve more disk, and others do not — they will use up all that is available. An automatic program could be written to give more disk to those in need, and to take quota from those projects which had extra; but the algorithms involved would be complicated and <u>ad hoc</u>, and manual adjustment and intervention would still be required. A restricted system administrator can do some of this quota moving, since he has the movequota command available, but it takes some experience, and is hard to explain. The general strategy is to keep some extra quota on >user_dir_dir, available for giving to new projects or to old projects which are running out of disk. Issuing the command #### movequota >udd>Alpha 50 will give the project named "Alpha" 50 more records of quota. A negative amount will move quota up from a project to >udd. The difficulty arises when the free quota on >udd runs low. There are two possibilities: If the installation has a total quota which is already as much in excess of physical capacity as should be allowed (for instance, if the disk is over 90% physically full), no more quota should be generated. The administrator must either take quota from some other project, or from some system directory, or deny the request. Knowledge of the various projects' activities and moral suasion may have to be employed. A "hold" should be put on new project registrations, too, since new_proj will gripe if it cannot christen a new project with enough disk. If, on the other hand, the administrator wishes to raise the total quota on the system, say by 1000 records, he should issue the command sac "setquota > 3000; mg >udd 1000" Full System Administrator Operations (assuming the quota on the root is normally 2000). The "send_admin_command" (sac) command sends a message to the initializer process which will be performed as soon as the initializer gets a chance. The command line executes a "setquota" to increase the root quota, and then executes a "movequota" to move the quota down to >udd, where it can be distributed as usual. The sequence described above is the only time that the setquota command should be used. This is because the disk-metering code in the storage system and the disk-accounting program require that disk quota form a "connected tree" with no directory which has a quota inferior to one that does not. See Chapter 9 (page 72) for more information on disk quota management. #### 13.2 Cleanup of segments Giving the restricted system administrator the "delete" command would allow him to destroy any data segment on the system. Therefore, it is up to the full system administrator to clean up segments, especially in >udd>SysAdmin>admin and its subdirectories, which are no longer needed. #### 13.3 Load control group management New projects will
automatically be assigned to the default load control group, "Other", by the new_proj function. Placing a project in a group requires modification of the segment "smf.new", followed by a new_smf. All that is required is to add the line group: Blah: after the "projectid" statement which defines a project. Generating a new group is done by running the program "ed_mgt", which is documented in the MPM SPS. #### 13.4 Special Project requirements Creating privileged projects, or under-privileged projects, or editing the pmf of a project to give it special treatment, must be done by the full system administrator. Consult the MPM SPS writeups of cv_smf and cv_pmf for more information. Full System Administrator Operations #### 13.5 Access to project directories Access control is the particular province of the system administrator. One thing he has to do that cannot be entrusted to the restricted system administrator is to provide the various project administrators with access to project directories. In some cases, the system administrator may be called upon to give access to one user's segments to a user from some other project. It is important to have someone responsible performing this function, so that ill-advised or malicious requests can be refused. #### 13.6 Crash Recovery Unrestricted system administrators may be called in to rescue the crank or the system administration subsystem if the system crashes while some accounting operation is in progress. The specific steps to take depend on the nature of the crash and on the operations being performed when the system went down. The worst crashes are those which are followed by a reload in which some accounting files are lost. Sometimes, this may keep the system from starting up; or worse, the system may start up, but be using old or inconsistent data. Operations should have standing orders to contact a system administrator if segments in the administrative directories are destroyed. More often, the difficulty is less catastrophic: for instance, the system may crash during a "new_pro]", and if the new_pro] is repeated it will turn out that a project is in smf.new twice. Restricted system administrators should be told which functions cannot be restarted; or told never to do anything more, if the system crashed while they were doing something, until the state of the accounting files can be checked. #### Chapter 14: Load Control Groups Load control groups are groupings of projects which share a guaranteed access to the system. Each load control group has a quota of "primary" load units which represents a guaranteed number of users from the group who will always be able to log in. Users in excess of the primary quota will be assigned "secondary" status and will be allowed to log in if the system is not full. Secondary users will be preempted if a primary user wants to log in and the system is full. Secondary users may be preempted to primary, and their grace recalculated, if a primary user from the group logs out. If a group's primary quota is full and the system is full, a user from the group will not be permitted to log in unless he is permitted to preempt some primary user in his group. This preemption is under control of the project administrator, who has two parameters he may adjust. In order to preempt another user, a new user must have the "preempting" attribute in the PDT, and his project must have the attribute in the SAT. In order to be preempted, a primary user must have his "grace" expire. The "grace" is set by the project administrator in the PDT, subject to a maximum grace given in the SAT. The attribute flags "no_primary" and "no_secondary" may also be set in the PDT or the SAT. If a project has the "no_primary" attribute, none of its users may be primary. Similarly, if a project has the "no_secondary" attribute, none of its users may be secondary. These flags may also be set by the project administrator for individual users. The "guaranteed_login" attribute is used only for system projects. If a user has this attribute in the PDT, and if his project has the attribute in the SAT, then the user will be logged in if at all possible if he specified the "-force" argument to login. He may overload the system in the process of logging in, or may even have to bump a primary user if the system has attained its maximum number of users. The accounting system will be set up with two groups by the accounting cold start. One group is called "System", and is for the use of the daemons and system administration -- those users vital to the operation of the system. The rest of the users on the system will be placed in the "Other" group. To define additional load control groups, use the "ed_mgt" command to edit the master group table. For example, to add a group called "SysProg" and to give it to the project called "Multics", perform the following operations from an unrestricted system Load Control Groups administrator: ed_mgt >system_control_dir>master_group_table a SysProg 5 w q edm smf.new 1 projectid: Multics: 1 group: SysProg: q ec master new_smf The control parameters for a group are its primary quota, expressed as constant + max_units * numerator / denominator so that the number of units allocated to a group has a guarantee and a portion which varies with the number of units allowed on the system; and, optionally, an absolute maximum rumber of units for the group, primary or secondary. This maximum is also expressed as constant1 + max_units * numerator1 / denominator1 The absolute maximum can be used if you prefer to see the system at less than maxunits rather than having many secondary users in some group; this strategy may provide better response for those users who do get logged in. A primary quota of "-1" for a group indicates that the group should take "all the rest" of the primary quota on the system, after those groups which have fixed quotas have been deducted from maxunits. No more than one group should have a quota of "-1", or havor will result. The total of all primary quotas must not add up to more than maxunits. The following is a list of the writeups which contain additional information about the system administration facility, its programs and data bases. #### Multics System Programmer's Manual The published documents on system and user control in section BQ are almost completely worthless. They describe programs which were never used, and in most cases never written. In some cases, one can discover design principles mentioned in these old documents which have been followed in the construction of today's facilities. A completely new section BQ is being prepared, which will provide an overview of the system and user control facilities actually part of the system. This project is not high-priority. #### Multics Programmer's Manual See section 1.2, "Logging in", and the command writeups for "login" and "logout". #### Multics System Administrator's Manual This document. #### Multics Project Administrator's Manual Describes the duties and powers of the project administrator. A copy of this document should be given to each project administrator. #### On-line help segments See the segments "charges.info", "load_ctl.info", "login.info", and "user_control.info". Multics Programmer's Manual - System Programmer's Supplement The currently installed programs which support administration and user control are documented in this manual. The writeups to read will be listed by category. #### System Control system_startup_ - system ring 1 overseer system_control_ - system user-ring overseer sys_log_ - initializer error messages #### User Control and Answering Service absentee_user_manager_ - absentee job control absentee_utility_ - absentee job scheduler & utility act_ctl_ - accounting admin - operator commands as_ - answering service startup as_meter_ - system metering asu_ - typewriter attachment aswa_ - typewriter and network i/o cpg_ - process creation datebin_ - date conversion utility dhodh_ - access checking utility dial_ctl_ - slave console control dialup_ - line control, login line parse, logout dog_ - process destruction hash_ - hash table utility hash_index - hashing function Ig_ctl_ - login decision, user identification load_ctl_ - load control decision not_ascil_ - string-checking utility rehash_ - hash table utility scramble_ - password scrambling test_dialup - testing tool up_pdt_ - pdt validation and updating up_pnt_ - pnt validation and updating up_sat_ - sat validation and updating up_sysctl_ - system table update control #### Administration and billing access_name - add or delete access control names in UCT accounts_overseer_ - initial procedure for administrator admin_util - lock and unlock sys_admin_data as_who - privileged who, for operator and admin. charge_daemon_usage - IO daemon charges from deck to PDT charge_disk - charge disk to projects charge_projects_to_accts - monthly billing MPM SPS Sections charge_user_ - PDT modification utility charge_user_registration - monthly billing charge_users_to_accts - monthly billing clear_projfile - monthly billing, cleanup clear_reqfile - monthly billing, cleanup compute_bill - daily billing console_edit - utility to update termseg console_report - generate console report by id code copy_as_meters - copy stat_seg for statistics report copy_pnt - make pnt copy for testing with blank passwords create_lines_file - installation startup tool cv_persmf - compile persmf into pnt (obsolete) cv_pmf - compile pmf Into pdt cv_smf - compile smf into sat daemon_acct_print - print daemon accounting deck daily_log_process - generate reports from log daily_summary - daily billing report disk_stat_print - print disk charge figures disk_usage_stat - sweep disk and print statistics disklow - report on projects low on disk dump_anstbl - dump answer table for debugging ed_installation_parms - edit installation parameters ed_mgt - edit master group table edurf - edit user registration segment epro - edit project segment erf -
edit regulsition segment fill_urf - pass through urf, get missing data format_attributes_ - output format utility get_password_ - password reading utility get_uid_with_lastname - search urf for tast name get_user_ - monthly billing subroutine hash_table - hash table maintenance idsort_ - fast sorting utility install - install system tables is_he_user - active function is_legal_pro] - active function labl1 - print billing labels mailing_labels - print user labels merg - monthly billing merge_urf_pnt - obsolete misc - input miscellaneous charges new_user - register or change user pdt_copy - copy all PDT's to safe directory ppro - print projfile print_disk - print project disk charges print_log - print log segment print_meters - create statistics report print_pdt - print pdt MPM SPS Sections print_ont - print ont print_sat - print sat process_daemon_cards - daily billing process_session_cards - daily billing proj_mtd - month-to-date project report oro]_usage_report - month-to-date project report punch_MIT_deck - monthly billing afo - print reafile remove_user - unregister user rename_onts_ - utility for new_user reset_dlsk_meters - monthly reset of disk meters reset_processed_flag - patch accounting deck flags reset_usage - reset usage data in PDT reset_use_totals - reset usage totals for reports send_admin_command - send command to initializer set_admin_data_ - locking subroutine for sys_admin_data sort_hist_file - sort billing data base sont_projfile - sont project database sort_regfile - sort requisition data base sweep - disk quota and charge accounting sweep_disk_ - disk hierarchy sweep sys_full_report - report on refused logins system_daily_report - write daily report system_monthly_report - write monthly report system_total - compute system availability for reports terminals_overseer_ - terminal repair init proc up_ctr - update charges this requisition, monthly urfp - brint urf urfsort - sort urf usage_total - compute system usage for reports value - active function and command write_acct_bill - monthly billing write_billing_summary - monthly billing write_user_usage_report - monthly billing #### Data Bases answer_table - answering service user database communications - system control password disk_stat - disk charge figures installation_parms - installation parameters IO__accounting - daemon accounting deck log - answering service log miscfile - miscellaneous charges journal mgt - master group table pdt - project definition table pit - process initialization table pnt - person name table - MPM SPS Sections pro]_admin_seg - system table installation pro]file - project segment reqfile - requisition segment sat - system administrator's table stat_seg - answering service statistics sys_admin_data - system administration lock urf - user registration segment use_totals - report data base whotab - public list of users logged in master.ec - system administrator commands biller.ec - billing operations err.ec - administration errors util.ec - administration utility acct_start_up.ec - installation accounting startup #### Appendix 1: Sample forms Generating a few workflow forms for the use of the user accounting office can simplify the operation noticeably. The forms will enable you to make sure that the necessary information is captured. Each installation will have its own peculiar requirements for these forms, so no general scheme is provided. Samples of the forms in use at MIT are attached. You will probably want the following: person registration form project registration form project deletion form tape registration form retrieval request form system problem/complaint form credit request form card processing request form configuration change log Roger says user accounts all-purpose letter user tape log miscellaneous charge input crash form backup tape log #### Massachusetts Institute of Technology #### Information Processing Center #### Person Registration for Multics System This form is only needed for people who have never been registered on Multics before. | ve n | e
Last | First | Middle | |--------------------------|---|---|--| | 4ai | ling address | | 110076 | | | enhone | | | | Pro | grammer number | | (If any) | | cha
per
let
alr | racter "Person ID", whic
son ID is usually th
ter) if possible: if so | h is unique
e last name
meone else
person ID | system is assigned a 1-20 at this installation. The (beginning with a capital with the same name is will be the last name with JRSmith). | | Def | ault project ID | | | | | istered persons must als
lect by the project admi | | zed to use a particular or the project. | | | ase attach a slip of
sword may be 1-8 charact | | a personal password. Yours and digits only). | | | may change your default
time you wish: consult | | or your password on-line Programmer's Manual. | | Ple | ase return this form to: | | | | | Information Processing
User Accounts Office,
M.I.T., 77 Massachuset
Cambridge, Massachuset | room 39-513
ts Avenue | | | | User Accounts Office (2 | | egistration, please contac | | Nam | | | Date | by ____ ## Massachusetts Institute of Technology Information Processing Center #### Project Registration for Multics System | Address | | |--|---| | Project Supervisor | | | Address | | | Phone | | | ***** | a project ID for your project: | | MIT acct | Requisition or P.O. | | If you wish to administer following information: | your project on-line, please supply the | | Directory for PMF | | | | Project) | | | Date | | | by | form revised 9/72 ## Massachusetts Institute of Technology Information Processing Center #### Multics Project Administration Request | TO: | | User Accounts Office, MIT 39-513 | |------|------------|---| | FROM | 4: | | | DATE | E 1 | · | | SU3. | JECT: | Project ID | | [] | | e delete the project and all its disk storage. Scratch
tapes and release all lockers associated with the
ct. | | [] | regis | e add the following persons to the project. Person tration forms are attached for any persons not ously registered. | | [] | | e delete the following persons from the project. Do not
e their directories. | | t 1 | user | e give project administrator status to the following (i.e. delegate the project). | | | | Istrator (Person.Project) | | | | by | | for | m revi | sed 9/72 | ### Massachusetts Institute of Technology Information Processing Center Multics Project Administration Request Confirmation | TO: | | (Project supervisor) | |------|-------------------------|---| | FRO | M: | User Accounts Office, MIT 39-513; 253-4118 | | DAT | E: | | | SUB | JECT: | Project ID | | f 1 | Your | project has been set up on Multics as requested. | | [] | Your | project has been deleted as requested. | | [] | The f | ollowing users have been added to your project. | | | | | | | ridi diki ana raganga a | | | | | | | [] | should | ollowing users have been deleted from your project. You delete their directories once you have copied any nts which you wish to preserve. | | | | | | | | | | t 1 | Your de He may | project has been delegated to a project administrator. y now add and delete users and control resource limits. | | | Direct | tory for PMF | | | | istrator (Person.Project) | | | | | | Date | e done | by | | form | n revis | sed 9/72 | ### HONEYWELL INFORMATION SYSTEMS Publications Remarks Form* | TITLE: | MULTICS SYSTEM ADMINISTRATOR'S MANUAL PRELIMINARY EDITION | ORDER No.: AK50, REV. 0 | |---------|---|---------------------------------------| | | | DATED: FEBRUARY 1973 | | ERRORS | S IN PUBLICATION: | L | | | | SUGGES | STIONS FOR IMPROVEMENT TO PUBLICATION: | · · · · · · · · · · · · · · · · · · · | L | (Please Print) | | | FROM: 1 | NAME | DATE: | | | COMPANY | | | 7 | TITLE | | | • | | | | - | | | CUT ALONG LINE ^{*}Your comments will be promptly investigated by appropriate technical personnel, action will be taken as required, and you will receive a written reply. If you do not require a written reply, please check here. FIRST CLASS **PERMIT NO. 39531** WELLESLEY HILLS, MASS. 02181 | Business | Reply | Mai | ı | |----------|-------|-----|---| | | | | | Postage Stamp Not Necessary if Mailed in the United States POSTAGE WILL BE PAID BY: **HONEYWELL INFORMATION SYSTEMS** 60 WALNUT STREET WELLESLEY HILLS, MASS. 02181 ATTN: PUBLICATIONS, MS 050 ## Honeywell # The Other Computer Company: **Honeywell** HONEYWELL INFORMATION SYSTEMS